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Abstract

Sensing and perception systems for autonomous driving
vehicles in road scenes are composed of four crucial com-
ponents: object detection, tracking, panoptic segmentation,
and 3D localization. While all these components are inher-
ently intertwined, most relevant papers tend to only focus on
a subset of these components. We separate the unified video
panoptic segmentation tasks into two subtasks: 1) multi-
object tracking and segmentation, and 2) semantic segmen-
tation. For the first stage, we propose a unified monoc-
ular 3D based framework that effectively tracks detected
moving objects over time and estimates their 3D localiza-
tion information as well as instance segmentation masks
from a sequence of 2D images captured from a dash cam-
era on a moving vehicle. Our system contains an RCNN-
based Localization for Tracking Network (Loc4Trk-Net).
The object association leverages deep pairwise contrastive
learning to identify objects in various poses and viewpoints
with appearance cues. A straightforward combination of
a 3D Kalman filter and the Hungarian algorithm is fur-
ther utilized for robust instance association via both fea-
ture similarity and 3D localization information. For the sec-
ond stage, we adopt the existing DeepLabV3+ for semantic
segmentation and further enhanced the performance with
data augmentation using label propagation. Our proposed
pipeline achieves an STQ score of 67.55 on the KITTI-STEP
dataset as well as the state-of-the-art performance on the
KITTI-MOTS leaderboard.

1. Introduction

3D Monocular object localization, tracking, and segmen-
tation are inherently ill-posed. The 3D detection method is
challenging in the absence of depth measurements or strong

priors given a single image, which often requires a large
amount of training data and is hard to adapt since they are
sensitive to training data. To overcome these problems, our
proposed unified monocular 3D framework begins with an
easy-to-train RCNN-based Localization for Tracking Net-
work (Loc4Trk-Net), which is only trained with limited
amounts of training data, not only to generate 2D bound-
ing boxes and instance masks but also to provide proper
initialization of detected objects’ 3D orientations and dis-
tances; Frame-by-frame detections are never perfect. Given
a strong localization basis, short-term 3D tracking tends to
be more robust and long-term 3D tracking becomes possi-
ble. At the same time, 3D tracking information across mul-
tiple frames can further assist 3D localization as well by
recovering missing/unreliable detections. In addition, self-
supervised spatial attention is also applied to our model to
learn an instance-aware embedding for each object, which
is an instance descriptor represented as a vector in a latent
space via deep contrastive learning. Robust tracking results
are obtained by associating the detections with the learned
features and their historical trajectories using an online 3D
Kalman filter and Hungarian matching algorithm. In sum-
mary, the proposed method claims the following contribu-
tions:

¢ An RCNN-based Loc4Trk-Net is proposed to not only
generate 2D bounding box and instance masks but also
simultaneously predict both the 3D orientation and dis-
tance of vehicles in the camera coordinate.

* Instance specific features, which are learned jointly
with the detection task, utilize the instance masks as
spatial attention to serve as a better embedding feature
for tracking association.

* 3D object tracking, which uses the learned instance-
aware feature via pairwise contrastive learning, is in-
corporated. A straightforward combination of a 3D



Kalman filter and the Hungarian algorithm is used for
online state estimation and robust data association.

* DeepLabV3+ [ 1] is adopted here for semantic segmen-
tation. To further improve its accuracy, we apply a
novel data augmentation method [13] by generating
pseudo images and labels.

* The proposed framework achieves an STQ of 67.55
on the KITTI-STEP leaderboard. Apart from that, we
apply our model to experiment on the KITTI-MOTS
dataset, and it also achieves the state-of-the-art perfor-
mance on the KITTI-MOTS dataset.

2. Related Work

Multi-Object Tracking. Recent multiple object track-
ing (MOT) methods have largely employed tracking-by-
detection schemes, meaning that tracking is done through
the association of detected objects across time. Most works
[12] on MOT are typically done in 2D image space. How-
ever, lack of depth information in 2D tracking causes failure
in tracking objects long-term due to disappearances or oc-
clusions. Given LiDAR point cloud, [8] uses standard 3D
Kalman filters and Hungarian algorithms to associate detec-
tions from LiDAR, resulting in fewer ID switches and can
perform long-term tracking. Yet LiDAR has its own draw-
backs, such as high cost and sensitivity to adverse weather
conditions. These limitations suggest that employing a
LiDAR-based object tracking system is unrealistic in prac-
tical, day-to-day applications. Our work is in line with the
recent developments in 3D object tracking fields and aims
to improve data association by leveraging 3D information,
but goes beyond this by integrating both visual cues and
3D localization information using only a monocular camera
without additional sensors to track objects in 3D.

Multi-Object Tracking and Segmentation. MOTS is
proposed as a new task to track multiple objects with in-
stance segmentation. Voigtlaende et al. [6] propose a base-
line approach, Track R-CNN, which can jointly address de-
tection, tracking, and segmentation via a single convolu-
tional network. While the aforementioned method is able
to produce tracking outputs with segmentation masks, the
network is trained under multiple task, resulting in increas-
ing the tracking performance while degrading the detection
and segmentation performance.

Video Panoptic Segmentation. Recently, the above
multi-object tracking with instance segmentation has also
been elevated to the panoptic domain. The new task re-
quires not only generating the tracking IDs along with in-
stance segmentation results across video frames but also do
the semantic segmentation at the same time. [7] proposes a
new benchmark dataset named KITTI-STEP addressing the
long-term segmentation and tracking problem, and together
with a new evaluation metric, which provides an important
insight towards a denser, pixel-precise video understanding.
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Figure 1. Detailed Architecture for Loc4Trk-Net. The up-
per two branches (in ) are the typical Mask-RCNN detec-
tion framework. The middle branch (blue) is the embedding head,
with the help of spatial attention (SA) neck ( ), which heavily
weighs on the foreground object to enhance instance-specific ap-
pearance features and suppress the noise in the background. The
bottom two branches predict the 3D orientation and distance in the
camera coordinates of the detected object (brown).

3. The Proposed Method
3.1. Multi-Object Tracking and Segmentation

Network Architectures. The proposed Localization for
Tracking Network (Loc4Trk-Net) is built upon a canoni-
cal two-stage object detection network, Mask R-CNN [2].
Loc4Trk-Net augments the Mask R-CNN model with addi-
tional learning objectives. The first stage of the network is a
2D object detection network, which extracts and scores re-
gion proposals by RPN, followed by the ROIAlign for fea-
ture cropping. Based on the top-scoring proposals, a con-
volutional encoder is used to refine the cropped features,
which are then fed into five separate heads. The second
stage of the network consists of both classical and cus-
tomized heads. For the 2D part we use three heads for stan-
dard multi-class classification, 2D box refinement and mask
generation respectively. Two more heads are introduced to
predict object 3D orientation and distance in the camera co-
ordinates. One additional embedding head is introduced to
train a discriminative feature embeddings to associate de-
tections and tracklets. The detailed architecture is shown in
Fig. 1.

Spatial Attention (SA) Neck. The intuition of the spa-
tial attention (SA) neck is to highlight the foreground (target
of interest) and suppress the background, so that more con-
centrated appearance features can be obtained. Details of
the SA neck is shown in Fig. 1 ( ), where ROI features
are pooled and flattened for classification and bounding box
regression. Simultaneously, they are passed through four
2D convolutional layers and a pixel-wise sigmoid operation



to generate the SA map, indicating the probability of objec-
tiveness. With the intermediate output of the SA operation,
several 2D convolution layers with kernel size 1 are applied
to produce the object mask. Meanwhile, the ROI features
are multiplied by the SA map to purify pixels which be-
long to the target and single-dimensional feature is further
extracted by fully connected layers.

Instance Embedding Head. The multi-object track-
ing problem requires distinguishable feature embeddings to
match detections and tracklets. We use RPN to generate
Rols from the two images and RolAlign to obtain their fea-
ture maps from different levels in the feature pyramid net-
work (FPN) according to their scales. An extra lightweight
embedding head is added to extract features for each Rol,
as shown in Fig. 1 (blue). An Rol is defined as positive to
an object if they have an IoU higher than 0.7, or negative if
they have an IoU lower than 0.3 in our settings. The match-
ing of Rols on two frames is positive if the two regions are
associated with the same object and negative otherwise. By
balancing positive and negative samples, we encourage the
embedding head to learn a feature embedding that can effec-
tively discriminate between instances, while being invariant
to perturbations like changes in viewpoint or lightning.

3D Orientation and Distance Head. The orientation
head takes the features from SA neck as input to generate
the 3D orientation output. The distance head takes a con-
catenated input, from both depth-aware ROIAligned fea-
ture maps (256x14x14) and convolved 512-dim features
for bounding-box classification/regression, to form more in-
formative input features for 3D distance, which is demon-
strated in Fig. 1 (brown). The concatenated features are
assumed to implicitly encode the 3D orientation informa-
tion and pre-defined object size information via the incor-
poration of the convolved 512-dim features. The outputs
from Loc4Trk-Net are particularly crucial for tracking and
segmentation tasks, where the feature embedding, 3D infor-
mation as well as their 2D instance masks of the objects are
of primary importance.

Data Association and Tracking. For simple design and
real-time efficiency, we use a conventional way to solve the
association between the predicted 3D Kalman states and
newly arrived measurements, which is to build assignment
problems that can be solved using the Hungarian algorithm.
To incorporate motion information, the detectionsvand pre-
dicted trajectories are associated using the Hungarian al-
gorithm. An affinity matrix is constructed by computing
the 3D Intersection of Union (IoU) or negative center dis-
tance between every pair of the trajectory and detection. To
incoporate the appearance information, our second metric
measures the smallest cosine distance between the ¢-th track
and j-th detection in appearance space. We combine both
metrics to get matched trajectories and detections using a
weighted sum following [9]. Based on the tracking results,

we are not only able to associate every object across frames,
but also can deal with errors caused by the occlusions and
missing detections. For those missing detections, we use
Huber regression for detection interpolations.

3.2. Semantic Segmentation

We adopted the DeepLabV3+ [1], which is the state-
of-the-art method in KITTI semantic dataset for semantic
segmentation. To improve semantic segmentation results,
Atrous Convolution is utilized in DeepLabV3+, for integrat-
ing global and local features for the network. Furthermore,
Zhu et al. [13] introduce a simple yet efficient data augmen-
tation pipeline for improving Semantic Segmentation train-
ing. They take the image I; and label L, as reference jointly
and predict images I;1 ¢ and labels L;. ; for data augmenta-
tion. As aresult, the dataset can be scaled by a factor 2k+-1.
Besides that, Boundary Label Relaxation is introduced for
better object semantic boundary estimation. Thus, by com-
bining the above instance results from 3.1 and semantic seg-
mentation methods, we achieve segmentation quality SQ of
64.04 in the KITTI-STEP.

4. Experiment Results
4.1. Dataset and Evaluation Metrics

KITTI-STEP [7] is a driving scenario dataset for both
car and pedestrian tracking task. It consists of 21 training
sequences and 29 testing sequences. The evaluation metrics
is the segmentation and tracking quality (STQ) consisting
of two factors, association quality (AQ) and segmentation
quality (SQ), that measure the tracking and segmentation
quality respectively. KITTI-MOTS [6] has the same train
and test sequences, and we evaluate our performance using
HOTA metrics [4], which accumulates the soft number of
true positives, false positives, and ID switches.

4.2. KITTI-STEP Performance

The performance of KITTI-STEP using STQ, which
measures segmentation as well as detection and track-
ing quality. Our method currently ranks the first place
among the total valid submissions. The performance of top-

selected algorithms among all competitors is shown in Ta-
ble 1.

4.3. KITTI-MOTS Performance

Our performance on multi-object tracking and segmen-
tation in the KITTI-MOTS is also shown in Table. 2. Upon
the time of submission, we are the 1¢ place among all the
image-based methods. Vip-DeepLab [5] tries to approach
the task by jointly performing monocular depth estimation
and video panoptic segmentation, though they require ad-
ditional ground-truth for training the depth esimation mod-
ule. ReMOTS [! 1] proposed an intra-frame self-supervised



Table 1. Competition results on KITTI-STEP test set, ours is

marked bold.
Method \ STQ 1 \ AQ 1T \ SQ(IoU) 1
Motion-DeepLab [7] | 52.19 | 45.55 59.81
HybridTracker 54.99 | 54.44 55.54
siain 57.87 | 55.16 60.71
EffPS_MM 62.93 | 61.49 64.41
REPEAT 67.13 | 65.81 68.49
IPL_ETRI (Ours) 67.55 | 71.26 64.04

Table 2. Performance of multi-object tracking and segmentation
methods on KITTI-MOTS test set, ours is marked bold.

Tracker | HOTA 1 | DetA 1 | AssA 1
ViP-DeepLab [5] 76.38 82.70 | 70.93
ReMOTS [11] 71.61 78.32 | 65.98
PointTrackV2 [10] | 66.33 83.12 | 53.38
TrackR-CNN [6] 56.63 69.90 | 46.53
MOTSFusion [3] 73.63 75.44 | 72.39
IPL_ETRI (Ours) 79.57 79.66 | 80.00

triplet construction network to learn mask features for both
training and testing set for Re-ID. PointTrackV2 [10] dis-
tinguish the foreground and background by regarding the
object’s mask and its surrounding environment as two sets
of 2D point clouds. However, these two methods are as-
suming the accurate initialization of segmentation from a
pretrained optical-flow estimation network.

5. Conclusion

We propose an unified 3D monocular localization, track-
ing and segmentation pipeline, combining with pairwise
contrastive learning and 3D instance estimation, to track-
ing moving vehicles in a 3D world. Our proposed pipeline
consists of four parts: an RCNN-based Localization for
Tracking Network (Loc4Trk-Net), cross-frames contrastive
feature learning modules, and a simple but effective 3D
Kalman filter. DeepLabV3+ is adopted here for semantic
segmentation. To further improve its accuracy, we apply a
novel data augmentation method by generating pseudo im-
ages and labels. Extensive experiments and ablation studies
have shown our method is effective and robust under differ-
ent autonomous driving scenarios. Overall, our method cur-
rently ranks the 1%¢ place on both KITTI-STEP and KITTI-
MOTS leaderboard.
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